

A software technology providing containers

* Un container è un environment di esecuzione completo ed isolato

- * Un container è un environment di esecuzione completo ed isolato
- * Condivide con il sistema host il kernel

- * Un container è un environment di esecuzione completo ed isolato
- * Condivide con il sistema host il kernel

Su cosa si basano i container?

- * Un container è un environment di esecuzione completo ed isolato
- * Condivide con il sistema host il kernel

Su cosa si basano i container?

- * Cgroups
- * Namespaces

- * Un container è un environment di esecuzione completo ed isolato
- * Condivide con il sistema host il kernel

Su cosa si basano i container?

- * Cgroups
- * Namespaces
- * Docker dalla versione 0.9 include la libreria libcontainer

Rispetto a un'intera macchina virtualizzata, un container è capace di offrire:

• un deployment semplificato

Rispetto a un'intera macchina virtualizzata, un container è capace di offrire:

- un deployment semplificato
- una disponibilità rapida

Rispetto a un'intera macchina virtualizzata, un container è capace di offrire:

- un deployment semplificato
- una disponibilità rapida
- un controllo più granulare

Rispetto a un'intera macchina virtualizzata, un container è capace di offrire:

- un deployment semplificato
- una disponibilità rapida
- un controllo più granulare

I vantaggi della containerizzazione:

• Più container sul proprio PC

Rispetto a un'intera macchina virtualizzata, un container è capace di offrire:

- un deployment semplificato
- una disponibilità rapida
- un controllo più granulare

I vantaggi della containerizzazione:

- Più container sul proprio PC
- Versioning semplificato

Rispetto a un'intera macchina virtualizzata, un container è capace di offrire:

- un deployment semplificato
- una disponibilità rapida
- un controllo più granulare

I vantaggi della containerizzazione:

- Più container sul proprio PC
- Versioning semplificato
- Testing più facile

Docker si compone principalemente di due elementi:

Docker si compone principalemente di due elementi:

Immagini:

• sono modelli completi per la creazione di uno o più contenitori

Docker si compone principalemente di due elementi:

Immagini:

- sono modelli completi per la creazione di uno o più contenitori
- un'immagine è sostanzialmente un file (o un insieme di file) che è lo snapshot di un contenitore

Docker si compone principalemente di due elementi:

Immagini:

- sono modelli completi per la creazione di uno o più contenitori
- un'immagine è sostanzialmente un file (o un insieme di file) che è lo snapshot di un contenitore
- ad es., un'immagine potrebbe contenere un OS Ubuntu con un application server WildFly, un'altra immagine (diversa dalla precedente) potrebbe contenere un OS Ubuntu con Wildfly, insieme a un'applicazione web di interesse

Docker si compone principalemente di due elementi:

Immagini:

- sono modelli completi per la creazione di uno o più contenitori
- un'immagine è sostanzialmente un file (o un insieme di file) che è lo snapshot di un contenitore
- ad es., un'immagine potrebbe contenere un OS Ubuntu con un application server WildFly, un'altra immagine (diversa dalla precedente) potrebbe contenere un OS Ubuntu con Wildfly, insieme a un'applicazione web di interesse

Un'immagine è un concetto statico, inerte

- un'immagine non viene eseguita direttamente
- un'immagine non ha un proprio stato
- un'immagine è immutabile

Docker si compone principalemente di due elementi:

Un **contenitore** è un'istanza eseguibile di un'immagine Docker

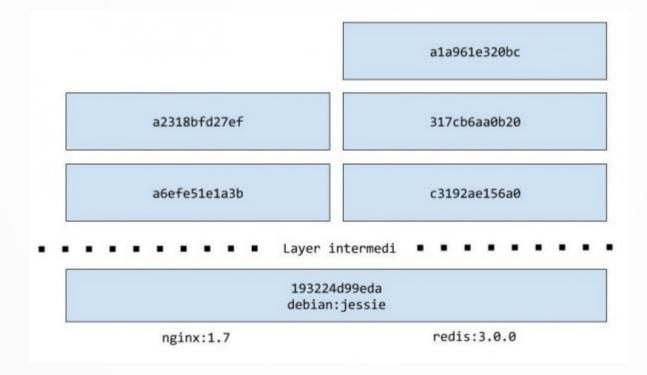
• un contenitore è un concetto dinamico, runtime

Docker si compone principalemente di due elementi:

Un **contenitore** è un'istanza eseguibile di un'immagine Docker

- un contenitore è un concetto dinamico, runtime
- un contenitore può essere eseguito su un host

Docker si compone principalemente di due elementi:

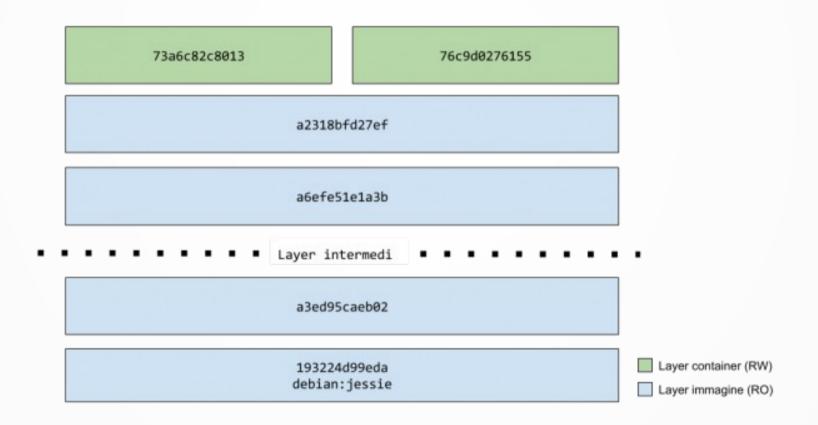

Un **contenitore** è un'istanza eseguibile di un'immagine Docker

- un contenitore è un concetto dinamico, runtime
- un contenitore può essere eseguito su un host
- più precisamente, un contenitore può essere in esecuzione, oppure essere stato arrestato, oppure essere in pausa

Union filesystem


Le immagini in Docker sono stratificate in layer *immutabili*, ovvero accessibili in sola lettura e non modificabili direttamente

Union filesystem


Tutte le modifiche apportate al container verranno memorizzate all'interno di un nuovo layer, detto anche *layer container*

Union filesystem

Nel momento in cui arriverà la richiesta di avviare una seconda istanza di un container, Docker non farà altro che creare un nuovo layer container.

Esempio esecuzione contenitore Docker

Un primo esempio minimale – basato sull'immagine hello-world disponibile presso il Docker Hub

- docker run hello-world

Output:

Hello from Docker!

This message shows that your installation appears to be working correctly.

Costruzioni di immagini

Per la costruzione di immagini personalizzate Docker fa uso di un file chiamato Dockerfile con un approccio di tipo infrastructure-as-code

- il Dockerfile contiene tutti i comandi da eseguire per costruire un'immagine personalizzata
- il comando docker build -t image-name context consente di costruire automaticamente un'immagine (di nome image-name) a partire da un contesto context

Costruzioni di immagini

Per la costruzione di immagini personalizzate Docker fa uso di un file chiamato Dockerfile con un approccio di tipo infrastructure-as-code

• Un Dockerfile è composto da una sequenza di istruzioni

```
# Dockerfile for Apache HTTP Server
FROM ubuntu:14.04
# Install apache2 package
RUN apt-get update && \
apt-get install -y apache2
# Other instructions
ENV APACHE_LOG_DIR /var/log/apache2
VOLUME /var/www/html
EXPOSE 80
# Launch apache2 server in the foreground
ENTRYPOINT ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]
```


Altri comandi Docker utili

- Per elencare i contenitori in esecuzione
 - docker ps [-a]
- per ispezionare le porte usate da un contenitore utile soprattutto quando si usa l'opzione -P
 - docker port container-name
 - il risultato è della forma 80/tcp -> 0.0.0.0:8080
- per ispezionare i log generati in un contenitore
 - docker logs container-name

